Mutational analysis of the disulfide catalysts DsbA and DsbB.

نویسندگان

  • Jacqueline Tan
  • Ying Lu
  • James C A Bardwell
چکیده

In prokaryotes, disulfides are generated by the DsbA-DsbB system. DsbB functions to generate disulfides by quinone reduction. These disulfides are passed to the DsbA protein and then to folding proteins. To investigate the DsbA-DsbB catalytic system, we performed an in vivo selection for chromosomal dsbA and dsbB mutants. We rediscovered many residues previously shown to be important for the activity of these proteins. In addition, we obtained one novel DsbA mutant (M153R) and four novel DsbB mutants (L43P, H91Y, R133C, and L146R). We also mutated residues that are highly conserved within the DsbB family in an effort to identify residues important for DsbB function. We found classes of mutants that specifically affect the apparent K(m) of DsbB for either DsbA or quinones, suggesting that quinone and DsbA may interact with different regions of the DsbB protein. Our results are consistent with the interpretation that the residues Q33 and Y46 of DsbB interact with DsbA, Q95 and R48 interact with quinones, and that residue M153 of DsbA interacts with DsbB. All of these interactions could be due to direct amino acid interactions or could be indirect through, for instance, their effect on protein structure. In addition, we find that the DsbB H91Y mutant severely affects the k(cat) of the reaction between DsbA and DsbB and that the DsbB L43P mutant is inactive, suggesting that both L43 and H91 are important for the activity of DsbB. These experiments help to better define the residues important for the function of these two protein-folding catalysts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB.

In the Escherichia coli system catalysing oxidative protein folding, disulphide bonds are generated by the cooperation of DsbB and ubiquinone and transferred to substrate proteins through DsbA. The structures solved so far for different forms of DsbB lack the Cys104-Cys130 initial-state disulphide that is directly donated to DsbA. Here, we report the 3.4 A crystal structure of a DsbB-Fab comple...

متن کامل

Mutational alterations of the key cis proline residue that cause accumulation of enzymatic reaction intermediates of DsbA, a member of the thioredoxin superfamily.

The DsbA-DsbB pathway introduces disulfide bonds into newly translocated proteins. Conversion of the conserved cis proline 151 of DsbA to several hydrophilic residues results in accumulation of mixed disulfides between DsbA and its dedicated oxidant, DsbB. However, only a proline-to-threonine change causes accumulation of mixed disulfides of DsbA with its substrates.

متن کامل

DsbB catalyzes disulfide bond formation de novo.

DsbA and DsbB are responsible for disulfide bond formation. DsbA is the direct donor of disulfides, and DsbB oxidizes DsbA. DsbB has the unique ability to generate disulfides by quinone reduction. It is thought that DsbB oxidizes DsbA via thiol disulfide exchange. In this mechanism, a disulfide is formed across the N-terminal pair of cysteines (Cys-41/Cys-44) in DsbB by quinone reduction. This ...

متن کامل

Reconstitution of a protein disulfide catalytic system.

Disulfide bonds are important for the structure and stability of many proteins. In prokaryotes their formation is catalyzed by the Dsb proteins. The DsbA protein acts as a direct donor of disulfides to newly synthesized periplasmic proteins. Genetic evidence suggests that a second protein called DsbB acts to specifically reoxidize DsbA. Here we demonstrate the direct reoxidation of DsbA by DsbB...

متن کامل

Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway.

Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 4  شماره 

صفحات  -

تاریخ انتشار 2005